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Abstract—The film condensation of low pressure metal vapors on isothermal vertical flat plates or tubes
is considered. The liquid film is treated as a thin layer in which the acceleration and pressure forces are
negligible and across which the temperature distribution is linear. The average behavior of the vapor is
found from the linearized one-dimensional vapor flow equations. In order to calculate the rate of con-
densation, a consistent distribution function for the vapor particles at the liquid-vapor interface is neces-
sary and is determined.

The result of the analysis is a set of algebraic equations from which one can predict the condensation
rate of low pressure metal vapors. A large but continuous temperature decrease in the vapor is predicted
and calculated. There is good agreement between the most recent and reliable experimental data and the
present theoretical calculations if, in the present calculations, the presence of a small amount of a non-

condensible gas is included.

NOMENCLATURE fi-f2.f5, components of distribution func-
A, integration constant appearing in tion;
equation (2.15); G, average mass condensation rate
A, total amount of noncondensible per unit area;
gases per unit area of condensing g, gravitational acceleration ;
surface; h, average heat transfer coefficient ;
a,, mean thermal speed ; hy.. Nusselt’s average heat-transfer co-
B, integration constant appearing in efficient ;
equation (2.16); K, thermal conductivity of vapor or
C, molecular speed ; mixture ;
C,, integration constant defined by K, thermal conductivity of condensate ;
equation (2.11); L, vertical length of condensing
C,, integration constant defined by surface;
equation (2.12); M, molecular weight ;
C, specific heat of vapor or mixture; M, Mach number of mean vapor flow
Cu specific heat of condensate ; at infinity ;
Dy, diffusion coefficient of a mixture of m, mass of a molecule;
two components; ng, saturation number density at tem-
1, distribution function of particles perature T;;
at the liquid—vapor interface ; y. number density of particles of third
kind;
* Presently at Stone & Webster Engineering Corporation, P, pressure of vapor or let'flre ’
Boston, Massachusetts. P, pressure of vapor at the interface;
+ Presently at Syracuse University, Syracuse, New York. Pr, Prandtl number;
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partial pressure
interface ;
saturation pressure at temperature
1
average heat flux per unit area;
universal gas constant;

gas constant of vapor or mixture ;
radial coordinate;

radius of condensing tube;
temperature of vapor or mixture;
temperature of vapor at the inter-
face ;

temperature of condensate ;
temperature at the liquid—vapor
interface;

temperature on the wall;

normal temperature of particles of
the third kind ;

isentropic temperature drop in
outer region ;

total temperature drop;
perturbation of vapor temperature ;
molecular velocity in x-direction;
velocity of condensate in x-
direction;

molecular velocity in y-direction;
velocity of vapor or mixture in
y-direction ;

mean drift velocity of particles of
second kind ;

velocity of vapor at the interface ;
velocity of condensate in y-direc-
tion;

perturbation of vapor velocity ;
concentration or mass fraction of
air;

concentration or mass fraction of
air at the liquid-vapor interface ;
direction parallel to condensing
surface;

direction normal to condensing
surface ;

roots defined by equation (2.21);
dimensionless parameter defined
by equation (3.14);

ratio of specific heats ;

of vapor at

op local film thickness of liquid ;

(S effective film thickness;

A latent heat of condensation ;

k, Boltzmann’s constant;

i, viscosity of vapor or mixture;

U viscosity of condensate ;

v kinematic viscosity of condensate

o) density of vapor or mixture:

[ density of vapor at the interface;

or density of condensate;

a, diameter of molecule;

O condensation coefficient ;

O coefficient defined by equation
(2.35).

Subscripts

0, stagnation conditions;

1, properties of vapor;

2, properties of noncondensible gas;

00, conditions at infinity or at the
intersection of outer and interfacial
regions.

Superscripts
0, zeroth-order solution ;
1, first-order solution.

1. INTRODUCTION
IN RECENT years, liquid metals and metal
vapors have been widely used as heat-transfer
media in nuclear and spacecraft applications.
For the condensation of metal vapors, it has
been observed that the measured values of
heat-transfer rate fall far below the predictions
of Nusselt’s theory [1] and its modifications
[2-8]. These theories are mainly based upon the
assumption that the surface temperature of the
liquid is equal to the saturation temperature of
the vapor and that the temperature of the vapor
is uniform. However, by means of these theories,
one can only explain the low observed heat-
transfer rates by assuming that the surface
temperature of the liquid is much lower than
the temperature of the vapor. The classical
kinetic theory of condensation [9-13] predicts
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implicitly a temperature jump at the liquid-
vapor interface (within one mean free path of
the surface), but the theory still fails to explain
the resuits of experiments. An excellent review
of the literature on condensation heat transfer
has been prepared by Withelm [14].

The inadequacy of Nusselt’s theory and the
unsatisfactory explanation of the temperature
drop at the liquid-vapor interface by the
kinetic theory of condensation motivated the
present investigation. The physical model
studied is that of laminar film condensation of
vapor on an isothermal vertical surface.

Details of the film condensation of a pure
vapor on an isothermal vertical flat plate are
discussed in Section 2. A solution is presented
which permits the prediction of the condensa-
tion rate of pure vapors or mixtures of a vapor
and noncondensible gases. It is shown that, due
to the viscosity and thermal conductivity of the
vapor, a large temperature drop can exist near
the interface in a narrow region whose thickness
is proportional to but much larger than the
mean free path and inversely proportional to
the average Mach number of the condensing
vapor. Fairly good agreement between the
theory and Sartor’s experimental data for
condensation of rubidium vapor [15] is ob-
tained.

However, there is rather poor agreement
between this theory and Sukhatme’s experi-
mental data for condensation of mercury vapor
on a finger type condenser [16]. The poor
agreement is probably due to the presence of
noncondensible gases and in small degree to
the isentropic expansion of the vapor itself as
it flows radially inward toward the condenser.
This vapor expansion was not present in
Sartor’s essentially constant area one-dimen-
sional flow.

In Section 3, we have extended the theory for
pure vapor to include the presence of non-
condensible gases. As expected, the presence of
noncondensible gases plays a decisive role in
retarding the condensation rate of low pressure
metal vapors. In Section 4, we have included
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the additional temperature drop due to the
expansion of vapor; this temperature drop may
become significant for low pressure systems
with high condensation rates especially in the
absence of air and other noncondensible gases.
The final result of the analysis is good agreement
between theory and experiments.

2. FILM CONDENSATION OF A PURE VAPOR
ON AN ISOTHERMAL VERTICAL FLAT PLATE

Discussion of the analytical model

For the present problem of film condensation
on an isothermal vertical flat plate, it is con-
venient to divide the vapor flow field into three
regions as shown in Fig. 1. In region I, the
y-component of the mean velocity of the vapor
at infinity is much greater than the maximum

T 7
s
Liquid Vapor
Isothermal
sur?ace .‘_8{_ I

FiG. 1. Schematic of film condensation. In region Lv . /u, » 1.
In region 1L v /u, = O(1). In region IL v /u, < 1.

value of the x-component of velocity, ie. the
downward velocity at the liquid—vapor inter-
face. For this case, the dynamics of the vapor
flow normal to the plate is important and can
not be neglected. In region II, the maximum
values of the two components of velocity are
about the same order of magnitude. In region
II1, the liquid film plays the important part and
the dynamics of the vapor can be completely
neglected.
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Under conditions of (a) large value of latent
heat, (b) long length of condensing plate, and
(c) high vapor density, region III will dominate
and the temperature change in the vapor may
be neglected. These conditions are usually met
in condensing steam and organic vapor systems
and explain why Nusselt’s theory works. On
the other hand, the condensation of low
pressure metal vapor generally occurs under the
following conditions: (a) a smaller value of
latent heat, (b) short length of condensing plate,
and (c) low vapor density. Under these condi-
tions, the vapor flow is important, and the
temperature drop in the vapor can not be
neglected.

If a temperature at the liquid-vapor interface
is assumed, the liquid film and the vapor can be
treated independently. The former is treated as
a liquid boundary layer, while the latter is
treated as a one-dimensional vapor flow. How-
ever, the two problems are really coupled since
the temperature and mass flux are assumed to
be continuous at the interface. A kinetic theory
argument is necessary to determine the con-
densation rate and hence the interface tem-
perature.

Liquid film

In the analysis of the liquid film, the following
assumptions are made: (a) the surface tem-
perature of the liquid film is approximately
constant, (b) the condensate flow is laminar,
(c) the fluid properties are constant, (d) momen-
tum changes through the condensate are
negligible and therefore the viscous force
balances the body force, (e) the vapor drag at
the interface is neglected, and (f) the temperature
distribution in the liquid film is linear.

With these approximations, the solution for
the flow in the liquid film is identical to that for
Nusselt’s theory. The result for G. the average
mass condensation rate per unit area, is

(2.1
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The mean heat-transfer rate of condensation
per unit area can be calculated from
0=.G. (2.2)
Vapour flow
The vapor will be treated approximately as a
one-dimensional flow. The general analysis may
be simplified by use of the following assump-
tions: (a) the properties of the vapor are con-
stant, (b) the total temperature drop in the
vapor is much smaller than the absolute bulk
temperature, although it may be much greater
than the temperature drop across the liquid
film, (c) the Mach number of the mean vapor
flow is very small, and (d) the vapor obeys the
perfect gas law. The simplified model and
coordinate system is sketched in Fig. 2.

Liquid

§\|
wy

Vapor

] e j

5,0,
F1G. 2. Schematic of one-dimensional vapor flow.
The governing equations of the vapor flow

are the continuity, momentum, energy and state
equations and are

d
E"(PU) =0 (2.3)
y
dv P, d%
- 44, 24
po dy dy + 3 U dyz ( )
dar d*T  dP , (dv)’
k& LS e (B) s
va,,dy Kdy2+vdy+3#(dy> (2.5)
P = pRyT. (2.6)
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The appropriate boundary conditions for the
vapor are: Bulk vapor conditions (y - o),

G
P=P V=t = - oo 27

T=T,,. s

where G is the mass flux and will be determined

from the matching of the vapor and liquid

film solutions.

Interface condition (y = 0),
T=T. (2.8)

Equations (2.3)+2.6) may be reduced to the
following

4 pdo RyT C,
- e = e 29
3Gdy v v +G 29)
and
4pdT (3 y Ry _RMT_‘E_Z_
3Gdy\dy—~1P,) v—-1 2
C
-2y -=2 (210
e (2.10)
where
clzw(‘;(ﬁ“ +vw) (2.11)
P Vo
and
_ v2
sz—G(C,,I; +—2—9) (2.12)

For simplicity, the above system of equations
will be linearized. Let T =T, + T° and
v = v, + v.By substituting these relations into
equations (2.9) and (2.10) and dropping second
order terms, one obtains the system,

4pdv C, v T

The solution may be found by assuming that

, 3G
T = Aexp (—— aZ;y) {2.15)
3G
v = Bexp (- cxﬂl—y> (2.16)

where 4, B and « are constants. Substitution of
equations (2.15) and (2.16) into equations (2.13)
and (2.14) leads to

y—1
(yo —4P)RyA — %P,M v,B =0 (2.17)

1
RyA + [(1 —a) ~ ;@] 0, B =0 (2.18)

where

2
— poovw

M2 .
7Po

(2.19)

For a nontrivial solution, the determinant of the
coefficients of 4 and B must vanish, i.c.

@GP, —yo)(l —a) M2 — %P, + o = 0.(2.20)

The solution when the Prandt! number is
two-thirds is presented here. The roots for the
limiting case, M,, — 0, are
8 1
9 M

o=

(221)

The positive root is necessary in the present
problem. With this value for «, the results for the
temperature and velocity distribution are

T, — T, G
Tx>T, —<°° ’) T, exp (_%Ey) (2.22)
Too 3[1

T, — T, 2G
vy, — ( T )vm exp (—§;}>.(2_23)

Since pv = p_ v, , it follows that

T, — T, 2G
p=p, + ( P €Xp | — = —y1.(2.24)
T, 3u
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The pressure may be obtained directly from the
equation of state and is

T. — T\?
P%’Pw—(—”ﬁ——?
T,

x P, [exp <~ %g y)]z. (2.25)

In this limit of M,, — 0, the linearized solution
indicates that the temperature and velocity vary
exponentially in a very thin layer near the inter-
face, while the pressure is approximately con-
stant [if (7o — T))/T, < 1]. For a saturated
bulk vapor, the vapor at the interface is there-
fore in a supersaturated condition.

Distribution function

The previous analysis does not permit the
calculation of the temperature T, at the inter-
face. However, this temperature can be deter-
mined if one constructs a consistent distribution
function which correctly describes the average
or macroscopic behavior of the vapor at the
interface.

A distribution function is assumed for those
particles on the vapor side at the plane which is
parallel to and located very close to the inter-
face. The assumed distribution function con-
sists of three parts and is written as

f=h+H+/fs (2.26)
/1 represents particles leaving the liquid with
zero drift velocity, f, represents particles enter-
ing the liquid with a drift velocity ¢, and f;
represents particles not entering the liquid but
moving over the condensing surface. Since the
condensing surface can serve as an energy
absorber, the energy normal to the surface may
be absorbed and transferred away through the
liquid. Hence. for particles of the third kind,
the thermal energy normal to the condensing
surface may be much smaller than the mean
thermal energy.
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The forms of f,, f, and f; are assumed to be

fin m %ex “mU2+V2+W3
="M \omkr) P W,

m 3
fo=n (m>

[ U2 + (V=5 + Wl]
X €Xp |—m

2T,

m U? + w?
B=m gt )P\ =",

m %‘x y?
“Namkz, ) P\ "ok,

where T denotes the normal temperature of
particles of the third kind.

If the mean drift velocity of particles of the
second kind is much smaller than the mean
thermal speed, the equation for f, may be
simplified to

20,
fr= (1 +FV> fi

s

(2.27)

where a2 = 2kT,/m.

The macroscopic properties of the vapor at
the interface are calculated from the following
definitions for the temperature 7, the density p;,
and the velocity v;:

o0

([{4mC? £ dU dV dW
kT = = (2.28)
({17 dUdvdaw
pi = ([ {mf dU dV W (2.29)
({mvsdU dv dw
b = 2% L (230)
({{mf dU dV dw

o0

The interface conditions are chosen to be the
same as those of the previous analysis, namely,
T,=T,P, = F,,and p, = P, /RyT,.
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By direct integration of equations (2.28)-
(2.30) and elimination of ny and #,, one obtains
the equation

G /T,
_p =2 3 AN Vo
P, Psnaﬂﬁgé+l_um%3n

which, when rewritten for the case of [, /T, — 0,
becomes

n P, — P,
2 @nRyT)F

It is interesting at this point to compare the
present result to that derived from Schrage’s
[10] or Kucherov-Rikenglaz’s analysis [11].
Their result can be written in the simplified form,

26, P, — P,

O G rRL,

Equations (2.32) and (2.33) lead to the following

formula:
26, 7w (T.,\*
2—0, 2\T)°

For a temperature drop in the vapor which is not
appreciably large, so that T, /T, = 1, the above
equations predict a value of o, + 0-88.

The data for condensation of liquid metals
[16-25] has been plotted in Fig. 3 (taken from

G= (2.32)

(2.33)

(2.34)

[26]) according to equation (2.33). The equiva-
lent values of o, = 0:88-0-92 from the present
theory are shown by the shaded stripe which
includes most data at lower pressures up to
0-1 atm. The discrepancy at higher pressures can
be explained by either an error analysis [15] or
the presence of noncondensible gases.

With the present approximation for the distri-
bution function, an interesting coefficient oy
may be defined which resembles the usual con-
densation coefficient ; namely oy is the fraction
of the total number density of particles of the
second and third kind that will actually con-
dense, i.e.

1
1+ ([P, - PYP, T

On

(2.35)

In the present problem, 64 has values between
05 and 1'0 and is shown in Fig. 4. When the
condensation rate is zero, oy is unity and de-
creases as the condensation rate increases.
Some results for condensation of one di-
mensional rubidium vapor are shown in Fig, 5,
where curves of heat-transfer rate per unit
area Q vs. the total temperature drop, Too — Ty,
for different values of vapor pressure P, are
plotted. The physical properties of rubidium
were taken from [27] and are as follows:

20
bk)
£
o
A
&
Q
o
Q
(=
2
2 %p
g Experimental data o %’ °
S From references [16—25] o &
© (taken from reference [26] ) 3
o
001 1 1 1 1
0- 000! [eRele]] 00l Ol 10
fgo' atm

FiG. 3. Condensation coefficient data.
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| N | 1
° 02 04 06 08 o
Ao Ps
A
FiG. 4. oy vs. (P — P)/P

K, = 23 Btu/hft°F, p, = 921bm/ft°>, C,, = 0:0913
Btu/Ibm°F, y; = 60 lbm/fth, A = 381 Btu/lbm,
and M = 85'51bm/mole. The saturation pressure
is a function of temperature and was also taken
from [27].

In Fig. 5, the theoretical results for various

20
o]
(o)
— (o]
&
~_ 15
s (o)
~
2 8-99!
o 1-648
< .
'© 025 —
= ~—— 0125
<
oL
5 | 1 | I
20 40 60 80 100 120
o= Tun °F

Fi1G. 5. Comparison of present theory with experimental data
(rubidium). The solid lines have been calculated by means of
the present theory for values of vapor pressure of 8991,
1:648. 0-25 and 0125 psia. O denotes Sartor’s experimental
data obtained for vapor pressures from 1648 to 8'991 psia.

pressures are compared with Sartor’s experi-
mental data. Sartor’s experiment was essentially
a one-dimensional, constant area, vapor flow
condensing on a liquid layer of uniform thick-
ness of about 012 in. The vapor pressures in his
experimental work varied from 1648 to 8991
psia. Theoretical results are shown for vapor
pressures of 8991, 1'698, 025 and 0125 psia.
As can be seen, lower vapor pressures give
lower heat-transfer rates.

It can be shown that the interfacial region
across which the temperature drop inside the
vapor occurs is very thin. The Mach number in
Sartor’s experiments with rubidium varied
from 0-002 to 0'005. The thickness of the inter-
facial region is about 500-1000 mean free paths
of rubidium vapor, or of the order of 5 x 1073
in. This confirms Sartor’s conclusion that there
is a rapid temperature change near the liquid—
vapor interface.

1 ]

0-00) 00l Ol

F16. 6. Comparison of present theory with Nusselt’s theory

(rubidium). The solid lines have been calculated by means of

the present theory for values of vapor pressure of 1'648. 025
and 0125 psia.

As a comparison with Nusselt’s theory, the
ratio of the average heat transfer coefficients
calculated from the present theory and from
Nusselt’s theory is plotted against the parameter
CuT, — Ty)/4 in Fig. 6. The general trend is
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that lower vapor pressures give greater devia-
tions from Nusselt’s theory.

The agreement between Sartor’s data and the
theoretical prediction is good with the dis-
crepancy between the two being less than 10 per
cent, but more data in a much lower pressure
range is needed to justify the theory. Some
important experiments of condensation of metal
vapors at lower pressures have been conducted
on a finger type condenser [16]. The available
data shows that the heat flux is considerably
smaller than the predictions from the above
theory. The discrepancy may be due to the
presence of noncondensible gases and to a small
degree to the isentropic expansion flow of the
vapor itself. These effects are discussed in the
following sections.

3. CONSIDERATION OF THE PRESENCE OF
NONCONDENSIBLE GASES

The following analysis is restricted to a
system composed of a mixture of vapor and air.
In experiments on condensing metal vapors, the
amount of air is kept as low as possible and
therefore in the present analysis the concentra-
tion of air may be assumed to be very small. The
same physical model shown in Fig. 2 is used here.

The governing equations for a mixture have
the same form as equations (2.3)(2.6) except
that the properties are those for a mixture. In
the present case, since the concentration of air is
assumed to be extremely small, the properties of
the mixture are the same as those of the pure
vapor to a good approximation.

In addition to equations (2.3)-(2.6), an equa-
tion to determine W, the concentration or mass
fraction of air, is needed. This equation is

dw :
poW = pDyp —— (3.1)

dy
which represents the balance between mass
convection and mass diffusion. D, , is the diffu-
sion coefficient for the mixture. Here and later,
subscripts 1 and 2 denote respectively the pure
vapor and air. From the kinetic theory for a rigid
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spherical molecule [28,29], it can be shown
that

p. -3 [RkT 1
1278y 2Pxn <01+02>2

2

3
<¥_1+_M_2 RT) (3.2)
MIMZ

where ¢ is the diameter of a molecule. For the
present calculations, all properties will be
evaluated at the vapor temperature T, .

It is convenient to solve the governing
equations by means of a perturbation expansion
in W, where W, is the local concentration of air
at the liquid-vapor interface. Assume an asymp-
totic expansion in W, for all dependent variables,
ie. P= P9+ WPY + . W=WWD 4 .
etc. The zeroth order solution is then just the
solution in the absence of any air.

By substituting these expansions into equa-
tions (2.3)2.6) and (3.1) and retaining terms of
lowest order in W, one obtains a system of
equations identical to that in Section 2 and a
diffusion equation

dwo

PO = P(O’Dugy‘ (3.3)

By neglecting the small variation of the
density, one can rewrite this equation as

dw
© Dy,—
12 dy

for which the boundary condition is W = 1|
at y =0 and W% - 0 as y - . The concen-
tration can then be found by integrating the
above equation and is

WM = exp (—— G y).
P D12

Since D, , is about the same order of magnitude
as vy, the thickness of the diffusion layer is found
to be comparable to that of a visco-conduction
layer.

To calculate W, the total amount of air per

GW® = —p (3.4)

(3.5)
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unit area A, must be specified, where

a0

Gy
A, = | p, Wex (— )d. 3.6
q J‘ p 0w Dy, y. (3.6

0

After integration of this equation, one obtains
A,G .
P DIZ

W, =

1

(3.7)

As can be seen, for a fixed amount of air 4, and
rate of condensation G, as the vapor density
decreases the concentration of air at the inter-
face increases. This will seriously retard the
rate of mass condensation and explains the
significance of the presence of non-condensible
gases in a low pressure metal vapor heat transfer
system. These effects will be discussed in more
detail in the following section.

The partial pressure of vapor P, at the
interface is calculated from

1—-W,

P, =P, . )
' 1 —[1 — (M /M)W,

By letting

(3.8)

1-—W

o =1 [1 = (M, /M)W,

(3.9

one can write the mass flux for a mixture as

~ T Pw. P, — P
G=2tiw ™ s .
2 (2nR, T)E, (3.10)

in contrast to equation (2.32) which was
obtained for the case of a pure vapor.

4. FILM CONDENSATION ON THE OUTSIDE OF
AN ISOTHERMAL VERTICAL TUBE

Theory

The condensation of low pressure metal vapor
on a finger type condenser is illustrated in Fig. 7.
It is convenient to define three regions in the
flow field: (1) the outer region in which the
vapor expands isentropically, (2) the interfacial
region in which the vapor is slowed down and
cooled by the presence of noncondensible gases

Y. S. HUANG. F. A, LYMAN and W. J. LICK

Vapor (7, R) 3 Vapor(%, A)
11T
Y
X
Vapor(7,, A) Vapor (T, A)
| 2
A
Too

F1G. 7. Schematic of finger type condenser. Regions 1. 2 and
3 are the outer, interfacial, and liquid film regions respectively.

and by viscosity and heat resistance, and (3) the
liquid film.

Since the thickness of the liquid film and the
interfacial region are very thin compared to the
radius of the condensing tube, the flow problem
in these two regions can be treated in the same
way as that for a vertical flat plate. The general
analysis and results in Sections 2 and 3 can then
be applied here. In the outer region, the flow
field and the temperature drop can be found by
approximating the flow as a one-dimensional
radial flow of an inviscid pure vapor. The
reason for considering the vapor pure is that
almost all of the noncondensible gas is in the
interfacial region.

In the outer region, from the solution for
isentropic radial flow, the mass flux is

G- 2yRu T, E.O_Z/y_ E&)(yﬂw] }1‘
=P LT\ P, P, '

4.1)
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Table 1. Temperature drop in the outer, interfacial, and liquid
film regions, including the presence of air. Points A, B and C
refer to corresponding points in Fig. 8

Temperature drop (°F)

Outer Interfacial
region region
Stagnation Liquid
pressure Isen- Satur- Isen- Satur- film
(Py) Point tropic ation tropic ation region
A 2 04 195 211 04
005psia B 8 12 46 528 105
C 14 25 805 920 15
A 2 03 215 233 26
015 psia B 8 10 585 655 45
C 16 22 117 1308 72
A 15 02 185 198 27
025 psia B 4 08 37 402 5
C 16 30 113 1260 14

The mass flux in the liquid film and interfacial
regions can be found from equations (2.1) and
(3.10), respectively.

Results

Some detailed results of analytical computa-
tions based upon Sukhatme’s experimental
conditions for mercury are presented in Table
1 and Fig. 8. The length of the condensing tube
was chosen to be 6in., while the properties of
mercury were taken from [30] and [31] and
are as follows: C, = 0033 Btu/lbm°F, p, =
8301bm/ft>, v, =01 x 107%ft¥/s, K, = 664
Btu/hft°F, 1 = 127 Btu/lbm and M = 201 lbm/
mole. The saturation pressure is a function of
temperature and was taken from [31]. To get
agreement with Sukhatme’s data, it is necessary
to assume there is 49 x 107° Ibm of air present
in his chamber, the dimensions of which are
6in. dia. and 11in. length. The corresponding
vacuum pressure of air is 494 x 107° bars. In
Fig. 8, the letters A, B and C refer to points for
which the temperature drops in various regions
have been listed in Table 1. As can be seen from
Table 1, the temperature drop in the outer
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and liquid film regions is negligible compared
to that in the interfacial region. Also shown in
Table 1 are the changes in saturation tempera-
ture for the various points in Fig. 8. Note that
the saturation temperature changes are smaller
than the isentropic temperature changes.

In the absence of air but under the same
conditions as above, the theoretical predictions
of heat flux are about two times higher than
Suihatme’s data. In this case, as the heat flux
increases, the temperature drop in the outer
region may become comparable to or even more
important than that in the interfacial region.
Generally speaking, the relative importance of
the isentropic temperature drop in the outer
region depends heavily upon the presence of
air. The presence of air will decrease the heat
flux as well as the temperature drop in the outer
region and, on the other hand, will increase

200
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FiG. 8. Comparison of experimental data with the present
theory including the presence of air. The solid lines have
been calculated by means of the present theory for vapor
pressures of 0-05, 015 and 0-25 psia. [ ] denotes Sukhatme’s
experimental data for mercury with numbers denoting
vapor pressures in psia. The temperature drops within the
various regions have been calculated for points A. B and C

(see Table 1).
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FI1G. 9. Fraction of the isentropic temperature drop in the
outer region for mercury vapor in the absence of air.

substantially the temperature drop in the inter-
facial region. To show the dependence of the
temperature drop in the outer region on the
heat flux, the ratio of AT, to AT, is plotted
against the heat flux @ in Fig. 9, in which the
absence of air is assumed.

5. DISCUSSION AND CONCLUSIONS

A set of algebraic equations has been found
for the prediction of heat-transfer rate by con-
densation. Good agreement has been found
between the available data and the theoretical
predictions when the presence of a small amount
of air was considered.

The theory is limited to small values of
(T, — T,)/T, and Mach number of the mean
vapor flow, but it can be extended to larger
values of these parameters by numerical solu-
tions of the basic equations. However, a good
heat-transfer system transfers heat with tem-
perature drops as small as possible. The corre-
sponding Mach number is accordingly very
small. Typically, the values of (T, — T))/T,
are 0-05 or less and the values of Mach number
are 02 or less. For these limits, the error involved
in using the linearized analysis may be estimated
to be 4 per cent or less, and therefore the
linearized solution is a good approximation.

Y. S. HUANG. F. AL LYMAN and W. J. LICK

The approximation of a constant temperature
on the surface of the liquid film was validated
by Sukhatme’s experiment. He measured the
thickness distribution of the liquid film and
found that it could be described by Nusselt’s
analysis with an assumed constant film surface
temperature.

Only the solution for small concentration of
noncondensible gases was given in this inves-
tigation. It was found that the presence of non-
condensible gases seriously retards the heat-
transfer rate of condensation, In experiments,
a great deal of care was taken to keep the
amount of noncondensible gases small. For
this reason. the solution for small concentration
is sufficient for comparison of theory and
experiment. In the calculations, the concentra-
tion of air at the liquid-vapor interface is 01
or less, which is small.

The effect of free convection was considered
by retaining the body force term in the momen-
tum equation. It was found that free convection
tion decreases the heat-transfer rate slightly.”
but the correction was small. about 01 per cent
or less. For a small temperature drop, free
convection is apparently not important, while
for a large temperature drop, the motion due to
free convection is still far less important than
the induced mean vapor flow.

There are other factors not being considered
in the present analysis, for instance, the impurity
of the vapor. the contamination of the liquid
surface, surface tension, and possible nucleation
of the vapor near the interface. Intuitively all
these factors probably decrease condensation
heat transfer. We conclude that the present
theory can be used in predicting an upper limit
of heat-transfer rate due to condensation of low
pressure metal vapors.
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TRANSFERT THERMIQUE PAR CONDENSATION DE VAPEURS METALLIQUES A
BASSE PRESSION

Résumé—On considére la condensation en film de vapeurs métalliques a basse pression sur des plaques
planes verticales et isothermes ou sur des tubes. On traite le film liquide comme une couche mince dans
laquelle les forces d’inertie et de pression sont négligeables et a travers laquelle la distribution de tempéra-
ture est linéaire. Le comportement moyen de la vapeur est trouvé a partir d’équations linéarisées et mono-
dimensionnelles de ’écoulement de vapeur. Afin de calculer le débit de condensatjon, on détermine une
fonction de distribution pour les particules de vapeur a I'interface liquide-vapeur.

L’analyse conduit 4 un systéme d’équations algébriques a partir desquelles on peut prédire le débit de
condensation de vapeur métallique a basse pression. Une décroissance de température étendue et con-
tinue dans la vapeur est démontrée par le calcul. Il y a bon accord entre les résultats experimentaux les plus
récents et ces calculs théoriques si dans ces derniers la présence d’une petite quantité de gaz non condensable

est prise en compte.
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WARMEUBERGANG BEI DER KONDENSATION VON METALLDAMPFEN GERINGEN
DRUCKS

Zusammenfassung—In diesem Beitrag wird die Filmkondensation von Metalldimpfen bei niedrigen
Driicken an vertikalen, ebenen Flichen oder an Rohren behandelt. Der Fliissigkeitsfilm wird als diinne
Schicht betrachtet, in der Beschleunigungs- and Druckkréfte vernachlassigbar sind und die Temperatur-
verteilung linear ist. Das durchschnittliche Verhalten des Dampfes wird beschrieben durch die linearisierte,
eindimensionale Stromungsgleichung des Dampfes. Um die Kondensationsrate berechnen zu kénnen, ist
eine konsistente Verteilungsfunktion der Dampfteilchen an der Phasentrennfliche nétig. Diese Funktion
wurde bestimmt.

Das Ergebnis der Untersuchung ist ein Satz algebraischer Gleichungen, mit denen die Kondensationsrate
von Metalldimpfen bei niedrigen Driicken vorausberechnet werden kann. Ein grosser, aber stetiger
Temperaturabfall im Dampf wird berechnet. Die Ubereinstimmung zwischen den neuesten, verlisslichen
Experimenten und der hier angefithrten theoretischen Berechnung ist gut, wenn in der Berechnung die

Gegenwart einer Menge nicht kondensierbaren Gases beriicksichtigt wird.

TEIIZIOOBMEH NP KOHJIEHCAUMU TTAPOB METAJLJIOB ITIPU
HU3HKNX ITABJEHUNAX

AHHoTamua—PaccmaTpuBaeTes KOHAEHCAIUMA TTapOB MeTAIOB IDH HUBKUX JAaBJEHMAX Ha
BePTHKANBHBIX H30TePMHUYECKHX INIOCKMX NJIacTHHAX Mum TpyOax. IljmeHKa ujgKoCTH
paccMaTpUBaeTCA KAK TOHKHMIL CJIOH, B KOTOPOM CHJIAaMH YCKODEHMA W JABJIEHHA MOMHO
npeneGpeds, a pacnpejesenie TEMIEPATY Bl ABJIAETCA JIMHeAHBM . CpegHne XapaKTepUCTHRH
mapa HaXojfTCA U3 JIMHEAPH30BAHHBIX YPAaBHEHUH [UIA OJHOMEDHOTO TeYeHMs Ilapa.
Onpeaeasietces coriacoBansas GyHKLUA pacnpefeeHus JUIA 4aCTULl Napa Ha ITOBEPXHOCTH
pasnena ULKOCTh-NIAp, HEOOXOJUMAA JJIA pacyeTa CKOPOCTH KOH[EHCALMMU.

B peayabrare aHaansa NoIyYeHa CUCTeMa aarebpandecKUX ypaBHeHHH , KOTOPbIE [I03BOJIAIOT
paccuMTaTh CKOpPOCTH KOHAEHCAIMM IAapOB MEeTAJIOB NpU HU3KUX HaBjeHuAx. IlpencrasaHo
1 pACCUUTAHO BHAYMTEJbHOE, HO HelpephlBHOE liOHMMeHHe Temmeparypsl. Habawopaercs
XOpouee COOTBETCTBME MY HAJEKHEIMU HOBEfIMMM SKCIIEPHMEHTAJbHBIMA NAHHBIMI N
pesyIbTaTaMM HACTOAIIEHO AHAJIM3A NPH YCJOBUM, YTO B JAHHBIX PACYeTax YYUTHIRAETCA

Hasnuue HeGOIBUIOr0 KOJHYECTBA HEKOHIEHCUDYIOMEerocs rasa.



