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Abstract-The film condensation of low pressure metal vapors on isothermal vertical flat plates or tubes 
is considered. The liquid film is treated as a thin layer in which the acceleration and pressure forces are 
negligible and across which the temperature distribution is linear. The average behavior of the vapor is 
found from the linearized one-dimensional vapor flow equations. In order to calculate the rate of con- 
densation. a consistent distribution function for the vapor particles at the liquid-vapor interface is neces- 
sary and is determined. 

The result of the analysis is a set of algebraic equations from which one can predict the condensation 
rate of low pressure metal vapors. A large but continuous temperature decrease in the vapor is predicted 
and calculated. There is good agreement between the most recent and reliable experimental data and the 
present theoretical calculations if. in the present calculations, the presence of a small amount of a non- 

condensible gas is included. 

NOMENCLATURE 

integration constant appearing in 
equation (2.15); 
total amount of noncondensible 
gases per unit area of condensing 
surface ; 
mean thermal speed ; 
integration constant appearing in 
equation (2.16); 
molecular speed ; 
integration constant defined by 
equation (2.11) ; 
integration constant defined by 
equation (2.12); 
specific heat of vapor or mixture ; 
specific heat of condensate ; 
diffusion coefficient of a mixture of 
two components; 
distribution function of particles 
at the liquid-vapor interface ; 

* Presently at Stone & Webster Engineering Cornoration. 
Boston, Massachusetts. 

- . 

-t Presently at Syracuse University. Syracuse, New York. 

components of distribution func- 
tion ; 
average mass condensation rate 
per unit area; 
gravitational acceleration ; 
average heat transfer coefficient ; 
Nusselt’s average heat-transfer co- 
efficient ; 
thermal conductivity of vapor or 
mixture ; 
thermal conductivity ofcondensate ; 
vertical length of condensing 
surface ; 
molecular weight ; 
Mach number of mean vapor flow 
at infinity ; 
mass of a molecule ; 
saturation number density at tem- 
perature T, ; 
number density of particles of third 
kind ; 
pressure of vapor or mixture ; 
pressure of vapor at the interface ; 
Prandtl number ; 
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partial pressure of vapor at 
interface ; 

saturation pressure at temperature 
T,; 
average heat thrx per unit area ; 
universal gas constant ; 
gas constant of vapor or mixture ; 
radial coordinate ; 
radius of condensing tube; 
temperature of vapor or mixture; 
temperature of vapor at the inter- 
face ; 
temperature of condensate ; 
temperature at the liquid-vapor 
interface ; 
temperature on the wall ; 
normal temperature of particles of 
the third kind ; 
isentropic temperature drop in 
outer region ; 
total temperature drop ; 
perturbation of vapor temperature ; 
molecular velocity in x-direction; 
velocity of condensate in x- 
direction ; 
molecular velocity in y direction ; 
velocity of vapor or mixture in 
y-direction ; 
mean drift velocity of particles of 
second kind ; 
velocity of vapor at the interface; 
velocity of condensate in y-direc- 
tion ; 
perturbation of vapor velocity ; 
concentration or mass fraction of 
air ; 
concentration or mass fraction of 
air at the liquid-vapor interface ; 
direction parallel to condensing 
surface ; 
direction normal to condensing 
surface ; 
roots defined by equation (2.21); 
dimensionless parameter defined 
by equation (3.14); 
ratio of specific heats ; 

local film thickness of liquid ; 
effective film thickness ; 
latent heat of condensation ; 
Boltzmann’s constant ; 
viscosity of vapor or mixture: 
viscosity of condensate ; 
kinematic viscosity of condensate; 
density of vapor or mixture ; 
density of vapor at the interface; 
density of condensate; 
diameter of molecule ; 
condensation coefficient ; 
coefficient defined by equation 
(2.35). 

stagnation conditions ; 
properties of vapor ; 
properties of noncondensi ble gas ; 
conditions at infinity or at the 
intersection of outer and interfacial 
regions. 

Superscripts 
0, zeroth-order solution ; 
1. first-order solution. 

1. INTRODUCTION 

IN RECENT years, liquid metals and metal 
vapors have been widely used as heat-transfer 
media in nuclear and spacecraft applications. 
For the condensation of metal vapors, it has 
been observed that the measured values of 
heat-transfer rate fall far below the predictions 
of Nusselt’s theory [lf and its modi~cations 
[2-S]. These theories are mainly based upon the 
assumption that the surface temperature of the 
liquid is equal to the saturation temperature of 
the vapor and that the temperature of the vapor 
is uniform. However, by means of these theories, 
one can only explain the low observed heat- 
transfer rates by assuming that the surface 
temperature of the liquid is much lower than 
the temperature of the vapor. The classical 
kinetic theory of condensation [9-13-j predicts 
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implicitly a temperature jump at the liquid- 
vapor interface (within one mean free path of 
the surface). but the theory still fails to explain 
the results of experiments. An excellent review 
of the literature on condensation heat transfer 
has been prepared by Wilhelm [14]. 

The inadequacy of Nusselt’s theory and the 
unsatisfactory explanation of the temperature 
drop at the liquid-vapor interface by the 
kinetic theory of condensation motivated the 
present investigation. The physical model 
studied is that of laminar film condensation of 
vapor on an isothermal vertical surface. 

Details of the tilm condensation of a pure 
vapor on an isothermal vertical flat plate are 
discussed in Section 2. A solution is presented 
which permits the prediction of the condensa- 
tion rate of pure vapors or mixtures of a vapor 
and noncondensible gases. It is shown that, due 
to the viscosity and thermal conductivity of the 
vapor, a large temperature drop can exist near 
the interface in a narrow region whose thickness 
is proportional to but much larger than the 
mean free path and inversely proportional to 
the average Mach number of the condensing 
vapor. Fairly good agreement between the 
theory and Sartor’s experimental data for 
condensation of rubidium vapor [15] is ob- 
tained. 

However, there is rather poor agreement 
between this theory and Sukhatme’s experi- 
mental data for condensation of mercury vapor 
on a finger type condenser [16]. The poor 
agreement is probably due to the presence of 
noncondensible gases and in small degree to 
the isentropic expansion of the vapor itself as 
it flows radially inward toward the condenser. 
This vapor expansion was not present in 
Sartor’s essentially constant area onedimen- 
sional flow. 

In Section 3, we have extended the theory for 
pure vapor to include the presence of non- 
condensible gases. As expected, the presence of 
noncondensible gases plays a decisive role in 
retarding the condensation rate of low pressure 
metal vapors. In Section 4, we have included 

the additional temperature drop due to the 
expansion of vapor ; this temperature drop may 
become significant for low pressure systems 
with high condensation rates especially in the 
absence of air and other noncondensible gases. 
The final result of the analysis is good agreement 
between theory and experiments. 

2. FILM CONDENSATION OF A PURE VAPOR 
ON AN ISOTHERMAL VERTICAL FLAT PLATE 

Discussion of the analy&icai model 
For the present problem of film condensation 

on an isothermal vertical flat plate, it is con- 
venient to divide the vapor flow field into three 
regions as shown in Fig. 1. In region I, the 
y-component of the mean velocity of the vapor 
at infinity is much greater than the maximum 

I 

Vapor 

II 

m 

FIG. 1. Schematic of film condensation. In region I.u,/u, % 1. 
In region II. D_/u, = 0( 1). In region III. z’os 182, * 1. 

value of the xcomponent of velocity, i.e. the 
downward velocity at the liquid-vapor inter- 
face. For this case, the dynamics of the vapor 
flow normal to the plate is important and can 
not be neglected. In region II, the m~imum 
values of the two components of velocity are 
about the same order of magnitude. In region 
III, the liquid film plays the important part and 
the dynamics of the vapor can be completely 
neglected. 
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Under conditions of (a) large value of latent 
heat, (b) long length of condensing plate, and 
(c) high vapor density, region III will dominate 
and the temperature change in the vapor may 
be neglected. These conditions are usually met 
in condensing steam and organic vapor systems 
and explain why Nusselt’s theory works. On 
the other hand, the condensation of low 
pressure metal vapor generally occurs under the 
following conditions: (a) a smaller value of 
latent heat, (b) short length of condensing plate. 
and (c) low vapor density. Under these condi- 
tions, the vapor flow is important, and the 
temperature drop in the vapor can not be 
neglected. 

If a temperature at the liquid-vapor interface 
is assumed, the liquid film and the vapor can be 
treated independently. The former is treated as 
a liquid boundary layer, while the latter is 
treated as a one-dimensional vapor flow. How- 
ever, the two problems are really coupled since 
the temperature and mass flux are assumed to 
be continuous at the interface. A kinetic theory 
argument is necessary to determine the con- 
densation rate and hence the interface tem- 
perature. 

Liquidfilm 
In the analysis of the liquid film, the following 

assumptions are made: (a) the surface tem- 
perature of the liquid film is approximately 
constant, (b) the condensate flow is laminar, 
(c) the fluid properties are constant, (d) momen- 
tum changes through the condensate are 
negligible and therefore the viscous force 
balances the body force, (e) the vapor drag at 
the interface is neglected, and (f) the temperature 
distribution in the liquid film is linear. 

With these approximations, the solution for 
the flow in the liquid film is identical to that for 
Nusselt’s theory. The result for G, the average 
mass condensation rate per unit area, is 

G = 4 E& * (T, - T,)Q. 
( ) 

(2.1) 

The mean heat-transfer rate of condensation 
per unit area can be calculated from 

Q = AG. (2.2) 

Vapour flow 
The vapor will be treated approximately as a 

onedimensional flow. The general analysis may 
be simplified by use of the following assump- 
tions: (a) the properties of the vapor are con- 
stant, (b) the total temperature drop in the 
vapor is much smaller than the absolute bulk 
temperature, although it may be much greater 
than the temperature drop across the liquid 
film, (c) the Mach number of the mean vapor 
flow is very small, and (d) the vapor obeys the 
perfect gas law. The simplified model and 
coordinate system is sketched in Fig. 2. 

FIG. 2. Schematic of onedimensional vapor flow. 

The governing equations of the vapor flow 
are the continuity, momentum, energy and state 
equations and are 

$w=o 
dv dP d2v 

pvdy= -dy+b&Y (2.4) 

2 dv = 
pvC’,dT=~E+vdP+~~ - 

dy dy2 dy 0 dy 
(2.5) 

P = pR,T. (2.6) 
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The appropriate boundary conditions for the 
vapor are: Bulk vapor conditions (y -+ co), 

T=T& P=P,, ZI=U~ = -; (2.7) 

where % is the mass flux and will be determined 
from the matching of the vapor and liquid 
film solutions. 
Interface condition (y = O), 

T= T,. (2.8) 

Equations (2.3)-(2.6) may be reduced to the 
following 

4 p du R,T C, .-_---__=~+_ 
3Gdy II -9- 

(2.9) 

and 

where 

c,= -c(-&+vm) (2.11) 

and 

.,=-C(,,, +$). (2.12) 

For simplicity, the above system of equations 
will be linearized. Let T = T, i- T’ and 
v = ;v, + u’. By substituting these refations into 
equations (2.9) and (2.10) and dropping second 
order terms, one obtains the system, 

The solution may be found by assuming that 

(2.15) 

u’ = Bexp - azgy 
i -1 4 Ii 

(2.16) 

where A, B and a are constants. Substitution of 
equations (2.15) and (2.16) into equations (2.13) 
and (2.14) leads to 

(ye - $P,)R,A - ~~.$$GI~B = 0 (2.17) 
cg 

u, B = 0 (2.18) 

where 

(2.19) 

For a nontrivial solution, the determinant of the 
coefficients of A and B must vanish, i.e. 

(4 P, - ya) (1 - a) M; - 4 P, + cx = 0. (2.20) 

The solution when the Prandtl number is 
two-thirds is presented here. The roots for the 
limiting case, M, -+ 0, are 

8 1 
a z --, - ___ 

9 YM”,’ 
(2.21) 

The positive root is necessary .in the present 
problem. With this value for x the results for the 
temperature and velocity distribution are 

4 ,u dv’ 
-3Gdv=20’+%$+R,; (2.13) 

Since pv = p, v, , it follows that 

RM _T’-v,,a’-s&~. 
1’ - 1 

(2.14) pgp, +(y)p,exp (-i$y).(2.24) 
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The pressure may be obtained directly from the 
equation of state and is 

x P, [exp (- ;;J$, (2.25) 

In this limit of M, + 0, the linearized solution 
indicates that the temperature and velocity vary 
exponentially in a very thin layer near the inter- 
face, while the pressure is approximately con- 
stant [if (T, - Q/T, G 11. For a saturated 
bulk vapor, the vapor at the interface is there- 
fore in a supersaturated condition. 

Distribution function 
The previous analysis does not permit the 

calculation of the temperature T, at the inter- 
face. However, this temperature can be deter- 
mined if one constructs a consistent distribution 
function which correctly describes the average 
or macroscopic behavior of the vapor at the 
interface. 

A distribution function is assumed for those 
particles on the vapor side at the plane which is 
parallel to and located very close to the inter- 
face. The assumed distribution function con- 
sists of three parts and is written as 

f = fl + f2 + f3. (2.26) 

j1 represents particles leaving the liquid with 
zero drift velocity, f2 represents particles enter- 
ing the liquid with a drift velocity cd, and f3 
represents particles not entering the liquid but 
moving over the condensing surface. Since the 
condensing surface can serve as an energy 
absorber. the energy normal to the surface may 
be absorbed and transferred away through the 
liquid. Hence, for particles of the third kind, 
the thermal energy normal to the condensing 
surface may be much smaller than the mean 
thermal energy. 

The forms of fl, f2 and J; are assumed to be 

,fl = n, (&y exp (- tn!+-“) 

x exp - m 
[ 

u2 + (V - i7J2 + w2 

2k7; I 

f3=nA(~~exp(-mU’2~~2) 

x (&pp (- tn&) 

where T denotes the normal temperature of 
particles of the third kind. 

If the mean drift velocity of particles of the 
second kind is much smaller than the mean 
thermal speed, the equation for f; may be 
simplified to 

f2Z l+$V fi 
( > 

(2.27) 
S 

where a,’ = 2krJm. 
The macroscopic properties of the vapor at 

the interface are calculated from the following 
definitions for the temperature T,, the density pi, 
and the velocity Ui : 

{j+mC’f dUdVdW 
@7, = --O” (2.28) 

@f dUdVdW 

pi = @mf dUdVdW (2.29) 

jT!rnVf dUdVdW 
lji = -“, 

,ii:.imf dUdVdW 

(2.30) 

The interface conditions are chosen to be the 
same as those of the previous analysis, namely, 
T = T,, Pi g P, , and pi = P, jR,T,. 
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By direct integration of equations (2.28b 
(2.30) and elimination of nA and i&, one obtains 
the equation 

- 

P. - P, = ;(2aR,TJ+ 
Glr, 

I - r,lr, > 
(2.31) 

which, when rewritten for the case of Y&/T, -+ 0, 
becomes 

n: Pm - P, 
G=- 

2 (2nRyT,)*’ 
(2.32) 

It is interesting at this point to compare the 
present result to that derived from Schrage’s 
[lo] or Kucherov-Rikenglaz’s analysis [l 11. 
Their result can be written in the simplified form, 

20 G=’ Cl - PS 
2 - err (27cR,T, )“; 

(2.33) 

Equations (2.32) and (2.33) lead to the following 
formula : 

20,p T,’ -- 
0 2-a, 2 T, . 

(2.34) 

For a temperature drop in the vapor which is not 
appreciably large, so that T, /T, * 1, the above 
equations predict a value of (T, + 0.88. 

The data for condensation of liquid metals 
[16-253 has been plotted in Fig. 3 (taken from 

[26]) according to equation (2.33). The equiva- 
lent values of qC = 088-092 from the present 
theory are shown by the shaded stripe which 
includes most data at lower pressures up to 
0.1 atm. The discrepancy at higher pressures can 
be explained by either an error analysis [15] or 
the presence of noncondensible gases. 

With the present approximation for the distri- 
bution function, an interesting coefficient o, 
may be defined which resembles the usual con- 
densation coefficient; namely a, is the fraction 
of the total number density of particles of the 
second and third kind that will actually con- 
dense, i.e. 

1 

OH = 1 + [(P, - P,)/P, 1’ 
(2.35) 

In the present problem, aH has values between 
0.5 and 1.0 and is shown in Fig. 4. When the 
condensation rate is zero, CQ, is unity and de- 
creases as the condensation rate increases. 

Some results for condensation of one di- 
mensional rubidium vapor are shown in Fig. 5, 
where curves of heat-transfer rate per unit 
area 0 vs. the total temperature drop, T, - T,, 
for different values of vapor pressure P, are 
plotted. The physical properties of rubidium 
were taken from [27] and are as follows: 

b” 

C 0 I 
.o 
5 
z 8 Experimental data 

s 
” 

From references [16--251 

(taken from reference [26] ) 

0.001 0 01 01 

P m. atm 

FIG. 3. Condensation coefficient data. 

> 0 92 

‘\ O-99 
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I I I I 
0 02 04 06 08 IO 

f&- A 

P, 

Rc;. 4. cH vs. (P - P,);P 

K, = 23 Btu/bft”F, p1 = 921bm/ft3, C,, = 0.0913 
Btu/lbm”F, pI = 60 lbm/fth, A = 381 Btu/lbm, 
and M = 85.5 lbm/mole. The saturation pressure 
is a function of temperature and was also taken 
from [27]. 

In Fig. 5, the theoretical results for various 

r,- r,, OF 

FIG. 5. Comparison of present theory with experimental data 

(rubidium). The solid lines have been calculated by means of 
the present theory for values of vapor pressure of 8.991. 
1.648. O-25 and @125 psia. 0 denotes Sartor’s experimental 
data obtained for vapor pressures from 1.648 to 8,991 psia. 

pressures are compared with Sartor’s experi- 
mental data. Sartor’s experiment was essentially 
a one-dimensional, constant area, vapor flow 
condensing on a liquid layer of uniform thick- 
ness of about 0.12 in. The vapor pressures in his 
experimental work varied from 1.648 to 8.991 
psia. Theoretical results are shown for vapor 
pressures of 8.991. 1.698, 0.25 and 0.125 psia. 
As can be seen, lower vapor pressures give 
lower heat-transfer rates. 

It can be shown that the interfacial region 
across which the temperature drop inside the 
vapor occurs is very thin. The Mach number in 
Sartor’s experiments with rubidium varied 
from 0,002 to 0+)05. The thickness of the inter- 
facial region is about 5WlOOO mean free paths 
of rubidium vapor, or of the order of 5 x lo-” 
in. This confirms Sartor’s conclusion that there 
is a rapid temperature change near the liquid- 
vapor interfa‘ce. 

olL 
0 001 001 

c (r,-) 
PC x 

J 
01 

Fri;. 6. Comparison of present theory with Nusselt‘a theory 
(rubidium). The solid lines have been calculated by means of 
the present theory for values of vapor pressure of 1.648. 0.25 

and 0.125 psia. 

As a comparison with Nusselt’s theory, the 
ratio of the average heat transfer coefficients 
calculated from the present theory and from 
Nusselt’s theory is plotted against the parameter 
C,,(T, - &)/A in Fig. 6. The general trend is 
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that lower vapor pressures give greater devia- spherical molecule [28,29-J, it can be shown 
tions from Nusselt’s theory. that 

The agreement between Sartor’s data and the 
theoretical prediction is good with the dis- 
crepancy between the two being less than 10 per 
cent, but more data in a much lower pressure 
range is needed to justify the theory. Some 
important experiments of condensation of metal 
vapors at lower pressures have been conducted 
on a finger type condenser [16]. The available 
data shows that the heat flux is considerably 
smaller than the predictions from the above 
theory. The discrepancy may be due to the 
presence of noncondensible gases and to a small 
degree to the isentropic expansion flow of the 
vapor itself. These effects are discussed in the 
following sections. 

D -3 - J 

7rkT 1 
12 8 2Pn 

(“k-2 RT)+ (3.2) 

where CJ is the diameter of a molecule. For the 
present calculations, all properties will be 
evaluated at the vapor temperature T, . 

It is convenient to solve the governing 
equations by means of a perturbation expansion 
in W, where W is the local concentration of air 
at the liquid-vapor interface. Assume an asymp- 
totic expansion in W for all dependent variables, 
i.e. P = P(O) + W.P(‘) + . . . . w = WW”’ + ..: 
etc. The zeroth drder solution is then just the 
solution in the absence of any air. 3. CONSIDERATION OF THE PRESENCE OF 

NONCONDENSIBLE GASES 

The following analysis is restricted to a 
system composed of a mixture of vapor and air. 
In experiments on condensing metal vapors, the 
amount of air is kept as low as possible and 
therefore in the present analysis the concentra- 
tion of air may be assumed to be very small. The 
same physical model shown in Fig. 2 is used here. 

The governing equations for a mixture have 
the same form as equations (2.3H2.6) except 
that the properties are those for a mixture. In 
the present case, since the concentration of air is 
assumed to be extremely small, the properties of 
the mixture are the same as those of the pure 
vapor to a good approximation. 

In addition to equations (2.3H2.6) an equa- 
tion to determine W, the concentration or mass 
fraction of air, is needed. This equation is 

pvw = pD,,E 
dy 

(3.1) 

which represents the balance between mass 
convection and mass diffusion. D,, is the diffu- 
sion coefficient for the mixture. Here and later, 
subscripts 1 and 2 denote respectively the pure 
vapor and air. From the kinetic theory for a rigid 

By substituting these expansions into equa- 
tions (2.3H2.6) and (3.1) and retaining terms of 
lowest order in W, one obtains a system of 
equations identical to that in Section 2 and a 
diffusion equation 

dW”’ 
p’o’v’o’W”’ = p(o)D12 __ . 

dy 
(3.3) 

By neglecting the small variation of the 
density, one can rewrite this equation as 

dW”’ 
GW”’ = - pm D,,-- 

dy 
(3.4) 

for which the boundary condition is W(l) = 1 
at y = 0 and W”) -+ 0 as y -+ ~0. The concen- 
tration can then be found by integrating the 
above equation and is 

W(l) = exp (- &y). (3.5) 

Since D, 2 is about the same order of magnitude 
as vl, the thickness of the diffusion layer is found 
to be comparable to that of a visco-conduction 
layer. 

To calculate W, the total amount of air per 
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unit area A, must be specified, where 

A, = [Pi Wexp (-&)dy. (3.6) 
0 

After integration of this equation, one obtains 

As can be seen, for a fixed amount of air A, and 
rate of condensation G, as the vapor density 
decreases the concentration of air at the inter- 
face increases. This will seriously retard the 
rate of mass condensation and explains the 
significance of the presence of noncondensible 
gases in a low pressure metal vapor heat transfer 
system. These effects will be discussed in more 
detail in the following section. 

The partial pressure of vapor P,; at the 
interface is calculated from 

1 - wi 
p,l = pm 1 - [l - (M1/M2)]Wi’ (3.8) 

By letting 

1 - wi 
Bwc = 1 - [l - @4,/M,)] w (3.9) 

one can write the mass flux for a mixture as 

in contrast to equation (2.32) which was 
obtained for the case of a pure vapor. 

4. FILM CONDENSATION ON THE OUTSIDE OF 
AN ISOTHERMAL VERTICAL TUBE 

Theory 
The condensation of low pressure metal vapor 

on a finger type condenser is illustrated in Fig. 7. 
It is convenient to define three regions in the 
flow field: (1) the outer region in which the 
vapor expands isentropically, (2) the interfacial 
region in which the vapor is slowed down and 
cooled by the presence of noncondensible gases 

‘, Vopor(;S, po) 
: 

t, 

’ b 

FIG. 7. Schematic of finger type condenser. Regions I. 2 and 
3 are the outer, interfacial, and liquid film regions respectively. 

and by viscosity and heat resistance. and (3) the 
liquid film. 

Since the thickness of the liquid film and the 
interfacial region are very thin compared to the 
radius of the condensing tube, the flow problem 
in these two regions can be treated in the same 
way as that for a vertical flat plate. The general 
analysis and results in Sections 2 and 3 can then 
be applied here. In the outer region, the flow 
field and the temperature drop can be found by 
approximating the flow as a onedimensional 
radial flow of an inviscid pure vapor. The 
reason for considering the vapor pure is that 
almost all of the noncondensible gas is in the 
interfacial region. 

In the outer region, from the solution for 
isentropic radial flow, the mass flux is 

e= po{yy[(s)2~ _ (g) (Y+ 1)/Y + 11. 
(4.1) 



HEAT TRANSFER BY CONDENSATION 751 

Table 1. Temperature drop in the outer. interfacial. ad liquid 
film regions. including the presence of air. Points A. B and C 

refer to corresponding points in Fig. 8 

Temperature drop (“F) 

Outer Interfacial 
region region 

Stagnation Liquid 
pressure Isen- Satur- Isen- Satur- Mm 

(P,) Point tropic ation tropic ation region 

A 2 0.4 19.5 21.1 0.4 
005 psia B 8 1.2 46 528 1.05 

C 14 25 80.5 92.0 1.5 

A 2 0.3 21.5 23.3 2.6 
015 psia B 8 1.0 58.5 65.5 4.5 

C 16 22 117 130.8 7.2 

A 1.5 02 18.5 19-8 2.7 
025 psia B 4 0.8 37 40.2 5 

C 16 3.0 113 126.0 14 

The mass flux in the liquid film and interfacial 
regions can be found from equations (2.1) and 
(3.10) respectively. 

Results 

Some detailed results of analytical computa- 
tions based upon Sukhatme’s experimental 
conditions for mercury are presented in Table 
1 and Fig. 8. The length of the condensing tube 
was chosen to be 6in., while the properties of 
mercury were taken from [30] and [31] and 
are as follows: C, = 0.033 Btu/lbm”F, pI = 
830 lbm/fP, vr = 0.1 x lo-’ ft’/s, K, = 6.64 
Btu/hft”F, A = 127 Btu/lbm and M = 201 lbm/ 
mole. The saturation pressure is a function of 
temperature and was taken from [31]. To get 
agreement with Sukhatme’s data, it is necessary 
to assume there is 4.9 x lo-’ lbm of air present 
in his chamber, the dimensions of which are 
6 in. dia. and 11 in. length. The corresponding 
vacuum pressure of air is 4.94 x 10P6 bars. In 
Fig. 8, the letters A, B and C refer to points for 
which the temperature drops in various regions 
have been listed in Table 1. As can be seen from 
Table 1, the temperature drop in the outer 

and liquid film regions is negligible compared 
to that in the interfacial region. Also shown in 
Table 1 are the changes in saturation tempera- 
ture for the various points in Fig. 8. Note that 
the saturation temperature changes are smaller 
than the isentropic temperature changes. 

In the absence of air but under the same 
conditions as above, the theoretical predictions 
of heat flux are about two times higher than 
Suihatme’s data. In this case, as the heat flux 
increases, the temperature drop in the outer 
region may become comparable to or even more 
important than that in the interfacial region. 
Generally speaking, the relative importance of 
the isentropic temperature drop in the outer 
region depends heavily upon the presence of 
air. The presence of air will decrease the heat 
flux as well as the temperature drop in the outer 
region and, on the other hand, will increase 

FIG. 8. Comparison of experimental data with the present 
including the presence of air. The solid lines have 

been calculated by means of the present theory for vapor 
pressures of @05, @15 and 025 psia. 0 denotes Sukhatme’s 
experimental data for mercury with numbers denoting 
vapor pressures in psia. The temperature drops within the 
various regions have been calculated for points A. B and C 

(see Table 1). 
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FIG. 9. Fraction of the isentropic temperature drop in the 
outer region for mercury vapor in the absence of air. 

substantially the temperature drop in the inter- 
facial region. To show the dependence of the 
temperature drop in the outer region on the 
heat flux, the ratio of AT,,, to A?;,, is plotted 
against the heat flux 0 in Fig. 9, in which the 
absence of air is assumed. 

5. DISCUSSION AND CONCLUSIONS 

A set of algebraic equations has been found 
for the prediction of heat-transfer rate by con- 
densation. Good agreement has been found 
between the available data and the theoretical 
predictions when the presence ofa small amount 
of air was considered. 

The theory is limited to small values of 
(TX - TJ/Tm and Mach number of the mean 
vapor flow, but it can be extended to larger 
values of these parameters by numerical solu- 
tions of the basic equations. However, a good 
heat-transfer system transfers heat with tem- 
perature drops as small as possible. The corre- 
sponding Mach number is accordingly very 
small. Typically, the values of (Tm - 7J/Tn 
are 0.05 or less and the values of Mach number 
are 0.2 or less. For these limits, the error involved 
in using the linearized analysis may be estimated 
to be 4 per cent or less, and therefore the 
linearized solution is a good approximation. 

The approximation of a constant temperature 
on the surface of the liquid film was validated 
by Sukhatme’s experiment. He measured the 
thickness distribution of the liquid film and 
found that it could be described by Nusselt’s 
analysis with an assumed constant film surface 
temperature. 

Only the solution for small concentration of 
noncondensible gases was given in this inves- 
tigation. It was found that the presence of non- 
condensible gases seriously retards the heat- 
transfer rate of condensation, In experiments. 
a great deal of care was taken to keep the 
amount of noncondensible gases small. For 
this reason, the solution for small concentration 
is sufficient for comparison of theory and 
experiment. In the calculations, the concentra- 
tion of air at the liquid-vapor interface is 0.1 
or less, which is small. 

The effect of free convection was considered 
by retaining the body force term in the momen- 
tum equation. It was found that free convection 
tion decreases the heat-transfer rate slightly,. 
but the correction was small. about 0.1 per cent 
or less. For a small temperature drop, free 
convection is apparently not important. while 
for a large temperature drop, the motion due to 
free convection is still far less important than 
the induced mean vapor flow. 

There are other factors not being considered 
in the present analysis, for instance. the impurity 
of the vapor. the contamination of the liquid 
surface, surface tension. and possible nucleation 
of the vapor near the interface. Intuitively all 
these factors probably decrease condensation 
heat transfer. We conclude that the present 
theory can be used in predicting an upper limit 
of heat-transfer rate due to condensation of low 
pressure metal vapors. 
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TRANSFERT THERMIQUE PAR CONDENSATION DE VAPEURS MGTALLIQUES A 
BASSE PRESSION 

RCsmn-On considtre la condensation en film de vapeurs m&alliques g basse pression sur des plaques 
planes verticales et isothermes ou sur des tubes. On traite le film liquide comme une couche mince dans 
laquelle les forces d’inertie et de pression sont nkgligeables et g travers laquelle la distribution de tempCra- 
ture est lin6aire. Le comportement moyen de la vapeur est trouvt g partir d’kquations lin&arisCes et mono- 
dimensionnelles de 1’6coulement de vapeur. Afin de calculer le d&bit de condensatjon, on dktermine une 
fonction de distribution pour les particules de vapeur & l’interface liquide-vapeur. 

L’analyse conduit B un systtme d’tquations algtbriques g partir desquelles on peut prkdire le dCbit de 
condensation de vapeur metallique g basse pression. Une dtcroissance de tempkrature etendue et con- 
tinue dans la vapeur est dCmontrCe par le calcul. I1 y a bon accord entre les r&.ultats experimentaux les plus 
r&cents et ces calculs thioriques si dans ces derniers la prCsence d’une petite quantitC de gaz non condensable 

est prise en compte. 
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WARMEUBERGANG BEI DER KONDENSATION VON METALLDAMPFEN GERINGEN 
DRUCKS 

Zusammenfassung-In diesem B&rag wird die Filmkondensation von Metalldampfen bei niedrigen 
Drticken an vertikalen, ebenen Flachen oder an Rohren behandelt. Der Fltissigkeitsfilm wird als dtinne 
Schicht betrachtet, in der Beschleunigungs- and Druckkrafte vernachlassigbar sind und die Temperatur- 
verteilung linear ist. Das durchschnittliche Verhalten des Dampfes wird beschrieben durch die linearisierte. 
eindimensionale Strijmungsgleichung des Dampfes. Urn die Kondensationsrate berechnen zu konnen, ist 
eine konsistente Verteilungsfunktion der Dampfteilchen an der Phasentrennflache notig. Diese Funktion 
wurde bestimmt. 

Das Ergebnis der Untersuchung ist ein Satz algebraischer Gleichungen, mit denen die Kondensationsrate 
von Metalldampfen bei niedrigen Driicken vorausberechnet werden kann. Ein grosser, aber stetiger 
Temperaturabfall im Dampf wird berechnet. Die ijbereinstimmung zwischen den neuesten, verlasslichen 
Experimenten und der hier angefiihrten theoretischen Berechnung ist gut, wenn in der Berechnung die 

Gegenwart einer Menge nicht kondensierbaren Gases berilcksichtigt wird. 

TEIIaOOFMEH IIPH KOH~EHCAHHH HAPOB METAJIJIOR HPH 
HBSKHX &4BJIEHHRX 

AHHOTa&iisI-PaCCMaTpHBaeTCH KOH~eHCaIWl IIapOB MeTaJIJIOB npkI HPI3KElX $aBJleHMRX Ha 

BepTHKaJIbHbIX I43OTepMWIeCKEIX n.nocKmx nnacrnnax UJI~ Tpy6aX. Hnenna W~IAIEO~TEI 
paCCMaTpABaeTCR KaK TOHKHti CJIOti, B H~TOP~M cunaivrn ycnopennn a ~annenwn MOMHO 

npeHe6peqb,a pacnpefieneme TeMnepaTypbI flB.meTcR mHeilHbIM. Cpennne xapaKTepncT~lKP1 

IIapa HaXO@TCfl II3 JIHFieapH30BaHHbIX ypaBHeHHti &WI OAHOMepHOrO TeYeHHFl Ilal'a. 

OnpeflenfzeTcn cornacoBaaaan +y~Kqm pacnpenenesm Em sacTIm napa sa nosepxIrocTl;r 

paaRena FKH)lKOCTb-IIap, Heo6xonma~ &iIfI paweTa CKOpOCTH KoH~eHca~nn. 

B peaynbTaTeaean~aano~yseHac~cTen~aanreSpan~ecKnxypaBHen~il,KoTopbre1103~0~~~~ 
paCCWITaTb CKOpOCTb KOHfleHCaqHPI IIapOB MeTaJIJIOB IIpE, HL13KIIX HaBJIeHHHX. npew;a3aHo 

M paCCWITaH0 3HaWTeJIbHOe, HO HenpepbIBHOe IIOHIlHCeHLie TeMlTepaTypbI. Ha6nrogaeTcfI 

XOpOLUee COOTBeTCTBHe MeHiAy HafieHEHbIMM HOBeriIUMH 3KCnepHMeHTaJIbHbIMEi AaHHbIMM R 

pe3yabTaTaMH HaCTOfIII(eH0 aHZIki3a IIpM yCJIOBPIEi, 'IT0 B JJaHHbIX paCYeTaX yWTbIRaeTCf1 

rrannqne KeBonbmor0 KomqecTI3a HelEoKAeacllpyro~erocFl rasa. 


